Practical Guide for Reporting Effect Size in Quantitative Research in the Journal of Counseling & Development

Jerry Trusty, Bruce Thompson, and John V. Petrocelli

The purpose of this article is to assist researchers in meeting the requirement of reporting effect sizes in quantitative research studies submitted to the Journal of Counseling & Development. This requirement is detailed in the "Guidelines for Authors" included in this issue. The authors provide practical information on generating, reporting, and interpreting effect size estimates for various types of statistical analyses. Information is provided on the meaning of effect sizes within the larger knowledge base.

Whereas statistical significance tests assess the reliability of the relationship between independent and dependent variables, effect sizes assess the strength of the relationship. When reported and interpreted appropriately, effect size estimates are practical, straightforward, and relevant to research questions and hypotheses (Wilkinson & APA Task Force on Statistical Inference, 1999). Effect sizes can serve as an important mechanism for communicating our professional knowledge base to others within and outside our profession, including our clients (Thompson, 2002a). Many researchers who publish articles in the Journal of Counseling & Development (JCD) are doctoral-level professionals. Many JCD readers, however, are master's degree level professional counselors. Therefore, researchers should (a) describe the significance of their findings in relation to counseling practice and (b) present findings in ways that are readily understood by counselors. Effectively providing effect size information is an important means for accomplishing both these goals (see American Psychological Association, 2001, pp. 5, 25–26).

For these various reasons, 23 journals currently require effect size reporting (cf. Harris, 2003; Snyder, 2000). Indeed, as Fidler (2002) recently noted, "Of the major American associations, only all the journals of the American Educational Research Association have remained silent on all these issues" (p. 754).

The purpose of the present article is to review briefly some of the frequently reported effect size choices, how these effect indices can be obtained from computer software, and how they are reported and interpreted. Only a few of the several dozen

HOW TO GENERATE, REPORT, AND INTERPRET EFFECT SIZE

Kieffer, Reese, and Thompson (2001) and Thompson and Snyder (1998) investigated the research and statistical techniques used in counseling journals during the past 15 years. These authors reported that of the various statistical procedures (beyond basic descriptive statistics), the most frequently used statistical procedures. Also, only a small percentage of JCD authors reported effect sizes (Thompson & Snyder, 1998). Therefore, we cover ANOVA and related techniques most thoroughly in this article. Bangert and Baumberger (in press) and Petrocelli (2003) reported that regression analyses and chi-square analyses were also relatively common in JCD throughout the last decade. Therefore, we provide guidelines regarding effect sizes for these two types of statistical analysis. Bangert and Baumberger did find a higher incidence of effect size reporting in regression analyses, in the form of reporting multiple correlation squared (R^2).

Because SPSS seems to be the statistical package most commonly used by counseling researchers, all practices in
this section are described using SPSS Version 11.0. Procedures in other versions of SPSS and other computer software programs (e.g., SAS, Minitab) are similar.

In all instances of reporting strength of association or mean differences, researchers should use the terminology *effect size* in their writing. This language alerts the reader to the fact that an estimate of practical significance is being reported. Otherwise, some readers may not recognize particular statistics as being estimates of effect size.

Effect Size in Analysis of Variance and Related Techniques

For ANOVA techniques, SPSS provides estimates of effect size in the form of η^2 (η^2). η^2 is an estimate of the proportion of variability in the dependent variable(s) explained, or accounted for, by membership in the groups defining the independent variable(s). η^2 is equivalent to the R^2 of a dummy-coded variable in regression (Pedhazur, 1982). η^2 estimates of effect size are not automatically provided in SPSS; that is, the researcher must specify that this estimate of effect size is desired.

In SPSS, η^2 is available through *Compare Means* procedures, but only in the *Means* choice (click on *Analyze, Compare Means, Means*), and not in the *T-Test* choices or the *One-Way ANOVA* choice. However, η^2 is consistently available through the *General Linear Model* procedures. Therefore, if you desire to perform a one-way ANOVA, for example, use *General Linear Model* instead of the *One-Way ANOVA* procedure accessed through *Compare Means* in the *Analyze* pull-down menu. Otherwise, these and other effect sizes may also be computed by hand (Snyder & Lawson, 1993).

From the *Analyze* pull-down menu in SPSS, select *General Linear Model*. Then select either *Univariate, Multivariate, or Repeated Measures*, depending on your design. After you specify your dependent variable(s) and independent variables(s)—termed *Fixed Factor(s)* in the box—click on the *Options* button. One choice in the *Display box* is *Estimates of Effect Size*. By clicking (checking) on that option, you will get partial η^2 estimates of effect size in your output file. The partial η^2 is an estimate of the amount of variance in the dependent variable(s) attributable to the particular effect of interest, and these statistics should be reported as partial η^2 statistics (see Tabachnick & Fidell, 2001, pp. 52–53). Partial η^2 estimates are displayed for each effect in the analysis (i.e., multivariate effects, main effects, interaction effects, effects of covariates). In the case of multiple dependent variables (e.g., MANOVA), partial η^2 estimates are displayed for each dependent variable. For researchers who use SPSS syntax, the subcommand line is `/PRINT = ETASSQ`, or alternatively, `/PRINT = EFSIZE`. Whether through the *pull-down* menu or through syntax, this procedure for obtaining η^2 estimates is available for all types of analysis of variance designs, including one-way univariate and multivariate designs, factorial designs, and repeated measures designs.

η^2 estimates are referred to as *variance-accounted-for* statistics. The interpretation of a partial η^2 value of .08 for a particular independent variable, for example, would be “Regarding effect size, 8% of the variability (or differences) in the dependent variable scores was explained or predicted with knowledge of group membership on the independent variable.” The complement of the Wilks’s lambda statistic ($1 - \text{Wilks’s lambda}$) has been used to indicate variance-accounted-for in multivariate tests. However, this practice may produce inflated estimates of explained variance, whereas the partial η^2 produces more reasonable estimates (see Tabachnick & Fidell, 2001, pp. 338–339).

Researchers may choose to use the SPSS MANOVA command for performing multivariate analyses. This command is available only through SPSS syntax and not through the SPSS pull-down menus. If the MANOVA command is used, researchers can use the squared canonical correlation as an overall estimate of variance-accounted-for effect size. The subcommand for obtaining the canonical correlation is `/PRINT = SIGNIF(EIGEN)`. Researchers can use structure coefficients (SPSS subcommand: `/DISCRIM = CORR`) to gauge the relative contributions of particular dependent-variable differences to overall effects.

There are situations in which *standardized-difference* effect sizes are needed in the reporting of results. This is particularly the case in experimental or quasi-experimental designs when the mean difference between experimental and control groups is of interest. Standardized-difference effect size statistics such as Cohen’s d can easily be calculated by hand, and researchers, by requesting descriptive statistics in analyses, can get all the statistics they need from the SPSS output (e.g., group means, standard deviations) to calculate Cohen’s d and similar statistics. Thompson (2002a) provided formulas for calculating Cohen’s d and for converting standardized-difference effect sizes into variance-accounted-for effect sizes, and Olejnik and Algina (2000) provided information on effect size calculations in several analysis of variance designs.

Effect Size in Regression Procedures

As stated earlier, effect sizes are commonly reported in regression analyses in the form of R^2, which is another variance-accounted-for effect size. Similar to the interpretation of η^2 and the squared canonical correlation, an R^2 of .32, for example, would be interpreted, "Regarding effect size, 32% of the variability in the dependent variable was explained, or accounted for, by the independent variables.” R^2 is automatically included in linear regression output in SPSS, and variations and extensions of regression (e.g., ordinal regression, logistic regression, structural equation modeling) include specific types of R^2 statistics.

One shortcoming of an overall R^2 is that effects are not revealed for particular independent or predictor variables. There are various approaches for gauging the effects of particular predictor variables. One method is to report standardized regression coefficients (standardized betas, path
coefficients). Another is to report the change in the \(R^2 \) when particular variables are entered hierarchically into regression equations (incremental increase in \(R^2 \)). Yet another is to remove a predictor from an equation and note the incremental decrease in the \(R^2 \). Structure coefficients have also been highly recommended (Courville & Thompson, 2001). Researchers should be aware of caveats regarding the use of standardized betas, increments, and structure coefficients (see Courville & Thompson, 2001; Pedhazur, 1982).

Multicollinearity and suppressor effects in regression equations can have considerable influences on results (see Cohen & Cohen, 1975; Tabachnick & Fidell, 2001), and therefore researchers should be alert for these situations and interpret results accordingly. In addition, it is advisable to report the adjusted \(R^2 \) in regression analyses (see Thompson, 2002a).

One purpose of reporting effect sizes is to provide future researchers with a consistent gauge of the strengths of associations. A future researcher who reads your article may be interested only in the relationship between one pair of variables in your analysis; therefore, inclusion of a bivariate (zero-order) correlation matrix along with your regression analysis will likely contribute to the knowledge base (see Pedhazur, 1982). Doing so will be especially useful to researchers conducting meta-analyses; otherwise, future researchers may choose to disregard your study simply because there is no reliable way to estimate the desired effect size (see Rosenthal & DiMatteo, 2001).

Effect Size in Chi-Square Procedures

As in ANOVA or regression procedures, there are numerous indicators of strength of association in chi-square analyses, and there is no one indicator that accounts for every type of association (Norusis, 1993). The use of one indicator or the other depends on the scaling properties of the variables involved. Also, some indices are symmetric (no variable is designated as the dependent variable) or asymmetric (one or the other variable is designated as the dependent variable), and some indices are symmetric only.

Chi-square tests are accessed through the Crosstabs choice in the Descriptive Statistics procedure in the Analyze pull-down menu (click on Analyze, Descriptive Statistics, Crosstabs). SPSS provides numerous chi-square measures of association including Phi (\(\phi \)), Cramer's V, Kendall's tau-b (\(\tau_b \)) and tau-c (\(\tau_c \)), Goodman and Kruskal's gamma (\(\Gamma \)), Cohen's kappa (\(\kappa \)), Goodman and Kruskal's lambda (\(\lambda \)), Goodman and Kruskal's tau (\(\tau \)), and Somers's d. Click on the Statistics button to access these and other statistics. In SPSS output, these various statistics are presented in terms of the scaling of the variables (e.g., nominal by nominal) and other criteria (e.g., symmetric or asymmetric). Researchers decide, based on variable scaling and the design and purposes of the research, which statistic is most appropriate for reporting effect size.

Interpretations of chi-square effect sizes are dependent on the specific statistic used. For example, Goodman and Kruskal's lambda is appropriate when both variables have nominal (categorical) scaling. Lambda represents the degree of reduction in the error of predicting the values (categories) of one variable based on the values (categories) of another variable. SPSS output provides lambda statistics for the symmetric case (no dependent variable) and both asymmetric cases (each variable as the dependent variable).

Researchers may benefit from using an SPSS Base System User's Guide (e.g., Norusis, 1993), a Base Applications Guide (e.g., SPSS, 1999), and the Help menus in SPSS as resources for selecting and interpreting estimates of effect sizes in chi-square analyses.

ATTRIBUTING FURTHER MEANING TO EFFECT SIZE

Basic reports and interpretations of effect sizes are only one part of the research task. The manuscript is incomplete unless these effects are evaluated in the context of the study and in the larger context of knowledge. It is common for researchers to use Jacob Cohen's benchmarks for small, medium, and large effect to evaluate their effect size results. However, Cohen did not intend for these benchmarks to be used with the rigidity that some researchers apply (Thompson, 2002a, 2002b).

Small effect sizes for very important outcomes can be extremely important, as long as they are replicable. For example, the variance-accounted-for effect size for "not smoking" on cancer incidence is only around 2\%, yet, as Gage (1978) pointed out,

Sometimes even very weak relationships can be important. ... [O]n the basis of such correlations, important public health policy has been made and millions of people have changed strong habits. (p. 21)

Conversely, large effect sizes may be trivial if they involve trivial outcomes. Spurious large effect sizes can result from method variance and response biases (Thorndike, 1997) and from specification errors and outliers (Pedhazur, 1982). Misleadingly small effect sizes can result from measurement error and skewed distributions of variables (Tabachnick & Fidell, 2001). Skewed distributions of categorical variables can especially limit the magnitude of variance-accounted-for effect sizes (for an example, see Magidson, 1993, p. 139).

Effect size interpretation should be informed by an explicit factual comparison of detected effects with the effects reported in the related prior literature (Thompson, 2002b). However, interpretation also necessarily involves some subjective value judgment on the part of the researcher. The key is to be explicit in providing the reasoning underlying these judgments. As Huberty and Morris (1988, p. 573) noted, "As in all of statistical inference, subjective judgment cannot be avoided. Neither can reasonableness!"

